Posted in: Africa

Mining in africa

Why remote mines in Africa should be considering energy storage

There is no doubt that solar PV is the cheapest form of electricity generation globally. However, how does its application apply to remote mining operations? Africa is blessed with great solar resource, as well as mineral and metal resources – making mining an important industry on the continent. But remotely-located mining operations often mean that energy generation is an important concern. 

If a mining operation is located close to a utility grid, there could be an option to commission a new power line or grid connection to the mine. Whilst this may seem like an appealing option, there are many uncertainties in the creation of a new power line, and even in connecting to an existing one. How long will the powerline take to build? How will it be maintained and/or repaired when necessary? What would the costs be of such a connection? These questions need to be asked in conjunction with the political, regulatory and logistical risk considerations in taking on such an intervention. There is also the risk of the existing grid or utility being unreliable with frequent outages. 

Another consideration is the risk of using an outmoded form of technology, and what the implications of this might be for the future of your mining operation. Using mobile technology as an example, Africa has been able to leapfrog fixed line telecommunications straight to mobile phones, which has improved livelihoods on the continent substantially. A similar argument can be made for the fixed line electricity grid: decentralised electricity supply enable the opportunity to leapfrog outdated technology and maintenance that comes with fixed power lines to provide decentralised, reliable power. 

As such, many mines in Africa do rely on decentralised power, either in the form of diesel or solar PV. In addition to these decentralised power generation sources, battery storage is a great option to reduce costs and risks of power supply. 

Lithium Ion Battery Storage solar PV microgrid

The most common go-to option for remote mining solutions is diesel generation, due to its portability and reliability for remote mining operations. However, diesel is a costly option. Typically, diesel costs in African gold mining countries are around US$1 per litre of diesel – which translates to US 30c per kWh. This is in comparison to US 5c per kWh of solar PV electricity. Another consideration is the transportation of diesel to the mine site, which ironically is burning diesel to, in turn, burn more diesel. Despite the greenhouse gas emissions implications of this, it also adds an unnecessary layer of costs to the mining operation.

But is there another way? As mentioned above, many remote mines in Africa, whilst distanced to the utility grid and/or high-voltage grid connections, have fantastic solar resource. With the affordability of solar PV solutions, it makes sense to explore a solar PV system for mining operations in Africa. However, to provide power after hours and/or during the early hours of morning or late hours of evening, solar PV needs to be used in conjunction with a backup supply to keep the energy supply consistent. This might take the form of diesel generators, but energy storage – particularly in the form of lithium-ion batteries – is quickly becoming a less risky option. This is, in part, to the falling costs of energy storage technology. 

With costs of storage rapidly decreasing, energy storage provides a much more stable cost profile than grid-powered or diesel generated electricity, which both have unknown future cost fluctuations and risks. Similarly, the increased interest in electric vehicles, as well as global uptake of off-grid electricity, have sparked a sharp decline in battery costs.  

In addition, battery manufacturing capacity is expected to increase significantly by 2021 from just under 150 GWh/year in 2018 to 350 GWh/year in 2021, with the bulk of manufacturing taking place in China and the US. A similar forecast predicts an increase in manufacturing capacity from 350 GWh/year, to ~700 GWh/year. Similarly, the average battery plant manufacturing size has increased significantly, from around 10 GWh/year to just under 30 GWh/year. 

In conjunction with increased global demand and manufacturing capability, the costs of lithium-ion batteries have decreased significantly from 2013 – 2019, from around US$ 446 per kWh in 2013 to US$ 112 per kWh in 2019. 

Should the application of a solar PV and battery storage microgrid system be unfeasible for a mining operation, battery storage can still assist mining operations to save money by extending the life of generators by creating spinning reserve. This can create a ~2% diesel saving – or 2 MVA of batteries of spinning reserve could save ~260 000 litres of diesel.

A solar PV and energy storage microgrid ensures the control of power and energy sources. A high concentration of renewable energy, such as solar PV, in conjunction with storage, enables complete control of energy costs, eliminating logistics risks and price fluctuations. There are also various financing options available, such as buying the system outright or entering into a power purchase agreement. 
As mentioned, solar PV on the African continent is a no brainer. However, for remote mines, it may be necessary to install solar PV alongside battery storage solutions. Whilst solar PV saves money, energy storage solutions solve a few problems: they provide consistent energy supply and handle load changes, and also ensure that the costs of supplying power to the mining operation are known. This reduces much of the risk of electricity supply for both planned and existing mining operations.

Three ways to future proof your business in light of COVID-19

We are now into our third month of lockdown, and are starting to see the widespread economic impact of the COVID 19 pandemic. In South Africa, lockdown restrictions have eased a little, with most sectors returning to work and strict health protocols in place. However, we are far from where we were at the beginning of March, when COVID 19 seemed only like a remote possibility. It now seems like we might be entering the worst economic recession since the Second World War. In light of this, how will businesses prepare for the already uncertain future?

A recession worse than last year

According to the South African Reserve Bank, the South African economy  is expected to contract by 7% in 2020. Many sectors have been hard hit, with sectors such as manufacturing being particularly affected. Manufacturing itself was already struggling before the pandemic hit:  in February it reported a 2.1% year-on-year decrease in production volumes. The loss of production during the lockdown has further slowed some manufacturing sectors, such as the automotive industry, making their future uncertain. 

The struggling sectors, combined with the the fact that many South African’s have lost their jobs and will be spending little in the economy. Initial research shows that up to 14% of South African consumers have lost their jobs, with a further 37% saying that their work hours have been reduced. Many of them will be forced to cut expenditures dramatically in order to make ends meet, further shrinking the economy.

Since a recession seems inevitable, how can businesses weather the storm? The following are three suggestions. 

  1. Look critically at your business strategy

Those businesses that are flexible in either their operations or their offering will be the most likely to survive economic recession. We’ve seen this first hand: the closure of businesses that were successful but unable to adapt to the lockdown situation, and the success of businesses that make the most of the opportunity. Because no one saw this coming, it is those businesses that quickly adapted that got this aspect right. 

During a recession, essential, basic-needs items remain, whilst luxury, non-essential items are prioritised less by consumers. Pivoting your business strategy in order to meet the needs of consumers is important. In a business that focuses on industrial manufacturing, see if there are opportunities for operational efficiencies, such as making a basic necessity from the by-product of an industrial process, such as South African Breweries changing their manufacturing processes during the nationwide alcohol ban to produce much-needed hand sanitizer.

Rethinking business strategy is important for remaining profitable during a recession
  1. Cut operational expenditure

Cash flow is an essential to surviving a recession, and the reason that even profitable companies go under: without the cash to pay off operating expenses or salaries, businesses can quickly become bankrupt. One way to cut expenses, before the difficult decisions to retrench staff members, is to start with operational costs. In manufacturing and other industries, the easiest way to cut these expenses is to look to utilities – electricity and water – to ensure they are not spending more than necessary on these items. 

Start by evaluating the business for any potential inefficiencies: is it possible to shift production slightly later, to avoid peak hours? Can you implement a staggered start up of the plant, to avoid kVA surges and the associated costs? Have you made sure that energy inefficient lighting and heating have been taken care of? Once these factors have been examined, it is easier to identify how to proceed with reducing operating costs. 

One way that is very helpful to cut operating costs is through procuring solar PV electricity through a Power Purchase Agreement or PPA. This allows your business to benefit from lower electricity tariffs during the sunlight hours, and can be particularly beneficial if you can shift the bulk of production to happen during the day when the sun is shining. The one great thing about solar PV is that, even in the context of a global recession, prices are predicted to continue rapidly dropping.  

  1. Make sure your staff are engaged

Although there has been much written about employee engagement over the last few years, this “buzzword” does translate to the bottom line. A study conducted globally found that companies with highly engaged staff members had 17 % returns than those with low engagement levels. Therefore, in a recession where the bottom line is under threat, ensuring that employees are engaged could have a significant financial impact. (This also translates to employee turnover, by the way – about 40% of employees at low-engagement firms were likely to be looking elsewhere for jobs).

So how do companies create high employee engagement? This goes beyond basic employee wellness interventions, and translates back to genuine employer-employee value. If your employees believe that you are genuine about investing in them, they will be more likely to invest themselves in their job, which will translate into financial returns.

Employee engagement for solar PV
Solar for mining operations

Solar PV Microgrids for Mining: cost-cutting meets sustainability

The mining sector is one of the most important economic contributors to the African economy. However, mining is also facing several challenges – particularly with regards to sustainability and cost-saving. Mining operations are increasingly turning to solar PV microgrids as a reliable and sustainable alternative energy option.

Cost-cutting competitiveness

A 2019 Mckinsey review on measures to invigorate the South African mining industry identified cost-cutting competitiveness as a key factor. As an energy-intensive industry with a projected increase in energy consumption of 36% by 2035, the mining sector is looking to renewable energy, and particularly solar, as a significant cost-saving solution. This is evident in the agenda set for the 2020 Investing in Africa Mining Indaba taking place in Cape Town at the beginning of February, where industry experts will lead the conversation on the economic and societal benefits of renewable energy in mining.

A shift in industry thinking

proactive mitigation of ESG risks creates long term shareholder value.

Speaking to Engineering News & Mining Weekly Tom Quinn, an organiser of Mining Indaba, emphasised that:

‘It is now absolutely necessary for mining companies to have ongoing engagement with their investors and with the communities in which they operate in order to mitigate the risk of investor or community backlash from a lack of sustainable practices.’

This shift in industry thinking is aided by the economic benefits associated with using renewables such as solar PV microgrids to supplement more traditional energy sources. It is now widely accepted that maintaining a Triple Bottom Line is key to responsible investment. IFC’s Global Head of Mining Namrata Thaper advises that:

‘[E]xperience has shown that proactive mitigation of ESG risks creates long term shareholder value. This value is created by ensuring alignment between stakeholders and thereby reducing the likelihood of disagreements between stakeholders, which can lead to cancellation of concessions by government, labour unrest and strikes, community blocking or stopping of operations and more which are all events that can negatively impact financial performance…’

Renewable trends

‘The most advanced options… are hybrid systems that integrate solar, wind and batteries with diesel, gas or heavy fuel oil generators, without compromising reliability or power quality.’

For the mining industry, who rely heavily on consistent, uninterrupted power, the key energy trends to watch in 2020 are hybrid power, advances in renewables technology, variable power usage, intelligent seamless integration and meaningful cost savings.

Climate change, loadshedding and the fluctuating diesel price

However it is not just Triple Bottom Line reporting that is pushing mining companies to seek renewable energy solutions. Threats to productivity in the southern African region include unplanned breakdowns at state-run electricity utility Eskom, the fluctuating diesel price and supply disruption risks in the SADC region. The reliability of solar PV microgrids can mitigate these risks significantly.

On a global scale interruptions to energy production as a result of violent weather conditions caused by climate change has resulted in a growing shift to renewable energy. In response to this new challenge, businesses are focused on ramping up energy efficiency and reducing carbon emissions. Spencer Glendon, a senior fellow at Woods Hole Research Center cautions that climate change may be altering the economics of long-term infrastructure investment. It is crucial to ensure that one’s power supply is independent of at risk utility plants.

Solar PV microgrids offer a hybrid solution to these obstacles. In cases of remote locations, weak grid supply and reliance on diesel, there is an optimal business case for mines to use a solar PV microgrid. This typically combines a backup generator with batteries and solar to ensure a seamless transition and no interruption of power.

Positive outlook for solar PV globally and locally

‘the world’s total renewables-based power capacity will grow by 50% between 2019 and 2024’

The International Energy Agency’s (IEA’s) 2019 renewable energy market forecast for solar PV states that ‘the world’s total renewables-based power capacity will grow by 50% between 2019 and 2024’. Thus as there is a global transition to a varied renewable power sources the southern African region will find itself at a competitive advantage due to its strong irradiance levels (South Africa average more than 2 500 hours of sunshine per year). As a result of falling costs of solar PV and batteries worldwide, microgrids are now accepted as a reliable and cost-effective solution for industrial power generation.

The added benefits of third party financing

Financed solutions allows mining facilities to achieve immediate savings with no initial capex outlay. A solar Power Purchase Agreement (PPA) enables businesses to pay off and maintain their own solar energy systems at no upfront costs, while enjoying the immediate benefit of cost savings. Solar PV microgrids are increasingly the option of choice when looking to adopt a reliable, affordable, and sustainable energy solution.

Solar Power Systems - Alrode Brewery in Alberton - industrial solar power system

AB InBev bolster breweries with 8.7 MW renewable energy from SOLA

Renewable energy solutions are a quick and efficient way for South Africa to reduce energy demand on Eskom’s constrained grid, and solutions are being supported by businesses who see the value of embedded electricity solutions for their supply chains. 

This is according to Chris Haw, Chairperson of the SOLA Group, who in 2018 signed seven multi-tiered Power Purchase Agreements (PPA) with AB InBev Africa that are seeing large solar power plants built across seven major breweries in South Africa.

The Power Purchase Agreements will total around 8.7 MW DC capacity. Of this, 2.6 MW have already reached practical completion with the remaining projects in advanced stages of construction.

“Not only is solar a viable and cost-effective option for us, it aligns to our global sustainability strategy, which entails going 100% renewable by 2025,” says Taryn Rosekilly, Vice President of Procurement and Sustainability at SAB and AB InBev Africa.

ABin Bev Breweries will now be powered with solar energy

The bold step taken by AB InBev Africa highlights the private sector’s strong drive towards reducing carbon emissions and procuring renewable energy solutions.

Gugulethu Nogaya, the Renewable Energy Procurement Manager at AB InBev Africa explains that “procuring renewable energy is part of our sustainability objectives set at a global level. Our global renewable energy commitment is to ensure that 50% of our purchased electricity will come from renewable energy sources by 2020, and 100% by 2025”. 

Nogaya points out that the company has achieved its 50 % target ahead of schedule. “We are currently on track to achieve our 100 % target, with the PPA being an instrumental first step in ensuring our African business is on track to achieve the 2025 ambition.”  

Nogaya adds that “in order to meet the AB InBev 100 % target in South Africa, it will require solar renewable energy facilities to the total of 191 MW.” 

Jonathan Skeen, Gauteng MD and Gugulethu Nogaya, Renewable Energy Procurement Manager, at the launch of AB InBev's renewable electricity and electric truck launch

According to the International Energy Agency, distributed solar PV systems in homes and Commercial and Industrial buildings have almost tripled since 2014. It predicts that distributed energy will grow as much as onshore wind by 2024, making up half of all new solar PV capacity. 

This is likely due to the flexibility and affordability of PV plants compared to other forms of energy generation. The rollout of large-scale solar PV systems takes much less time than other generation technologies. 

There is also a greater demand and expectation that businesses take more responsibility for the way in which they operate. Providing renewable energy allows businesses to meet their sustainability targets whilst taking pressure off of Eskom’s load.

The PPA between AB InBev Africa and the SOLA Group is allowing solar PV to be rolled out without AB InBev incurring capital costs. Instead, the company will purchase its power requirement directly from SOLA, with the remainder coming from Eskom and local municipalities. 

In 2019, SOLA secured R400 M with partners from African Infrastructure Investment Managers (AIIM) and Nedbank in order to fund projects such as the AB InBev Africa solar facilities.

“Embedded electricity generation – particularly solar PV – can quickly address Eskom’s supply shortfall,” states Haw. “For large Commercial and Industrial companies, procuring renewable power enables saving costs whilst also reducing their carbon footprints.” 

The solar PV plants for AB InBev Africa span across seven different sites in various areas of the country, including the Western Cape, Limpopo, Gauteng, KwaZulu-Natal and the Eastern Cape. 

“Combined, the plants will consist of over 23 000 solar panels. The construction of the projects will create 175 jobs, in addition to SOLA’s 56 permanent positions,” points out Haw. 

AB InBev Africa is one of the largest industrial business in South Africa, making the conversion of their sites to solar significant. “The PV systems will produce close to 14 GWh of electricity per year – the equivalent of taking over 2000 cars off the roads. This is exactly the type of clean energy procurement that we need to see more companies committing to,” concludes Haw. 

SOLA starts 2020 by reaching 100 GWh target

SOLA has officially met its goal to generate over 100 000 000 kWh of clean energy by 2020 –  with a day to spare. 

The group set the target to reach 100 GWh of clean energy by 2020 as a goal when its C&I division started in 2014. And with just one day to spare, the target was met on 30 December 2019. 

100 000 000 kWh of clean energy in South Africa, where the carbon factor is quite high because of a coal-based electricity system, equates to saving around 92 590 tons of carbon emissions equivalents (CO2eq). This amount of CO2eq can be likened to taking 20 000 cars off the roads for a year, or avoiding 400 million litres of petrol, or powering 11 000 middle-class houses for a year, or planting 1.5 million trees, 10 years ago.

With wildfires currently raging across Australia, people dying of pollution-related causes in Mpumalanga, and our own Eskom struggling to keep the lights on, it is important to unpack the significance of this goal: we need to bolster the production of clean energy globally. And whilst 100 GWh is just a fraction of South Africa’s overall energy production, it is an important start in painting a better future for the country, and perhaps even the continent. 

Capella Stella – North West Province – South Africa

Can urban high-energy consumers benefit from solar PV?

It’s no surprise that high energy consumers are those that might benefit the most from renewable energy. In South Africa in particular, the coal-based electricity system means that large energy consumers carry large carbon footprints, which can undermine sustainability efforts and targets. But simply adding a few solar panels is not necessarily the answer either. 

That’s because renewable energy – in particular solar – needs space in order to effectively produce the necessary energy. For large energy consumers, the required space can be substantial – requiring a large solar farm situated in an area with excellent irradiance (solar resource). Whilst it does sometimes happen that the energy consumer is situated in an area with large land and good irradiance, this is not always the case. 

Open energy markets allow the trading of energy from different sources of production – either governmental, such as an Eskom-owned and operated coal-powered generation plant – or independent power producers (IPPs) – typically solar, wind, gas, and so forth. When energy is at its cheapest – as solar is during mid-day – consumers can buy this power and benefit from the associated cost savings. This is the type of energy market which is common overseas in places like California, where a central body facilitates the provision of power from various different sources. 

In South Africa, we are not yet at an open energy market situation. Energy is still provided almost exclusively by Eskom, with a few IPPs contributing to Eskom’s grid. But wheeling of power – forming an arrangement between an IPP and a commercial offtaker to use power via Eskom’s grid – is a possible workaround for large energy consumers. This fits with global trends that show that businesses are taking a more active role about procuring the type of power they want, according to Bloomberg.

Wheeling is essentially like a remote Power Purchase Agreement – it is a way for a corporate consumer of energy to procure electricity from an independent party. But unlike typical PPAs, wheeling enables larger amounts of power to be transferred, because the generation source – such as a solar PV system – doesn’t have to be situated geographically close to the offtaker. 

This means that a large solar farm – producing several MW of power in the highest solar resource areas of the country- could generate electricity for a high-energy consumer on the other side of the country, using the national electricity grid.

In South Africa, wheeling currently involves amending the System of Use Agreement from Eskom to stipulate that the energy can be wheeled – or generated in one source and consumed in another. The actual energy generated by the plant does not get transferred physically to the consumer, but electricity meters at either end (both at the producer and consumer) measure how much energy was generated and consumed and will be accounted for, respectively. 

The industries that can benefit from wheeling include large corporate energy consumers, such as mining operations, smelters, or data centres. All of these operations are suitable for wheeling because they are large energy consumers, but may have neither the space nor the inclination to build a large solar plant located at their operations. Wheeling agreements can ensure that they meet their sustainability targets, by reducing their carbon emissions, and cut operating costs, by procuring cheaper power when this is available.  

So wheeling can help to facilitate energy markets by allowing IPPs to produce affordable, clean power and sell it directly to corporate consumer, helping the latter to reduce costs and carbon emissions. Is there a catch?

There are a few different aspects of a wheeling agreement that can influence the tariff costs. Firstly, there are the wheeling fees, which Eskom charges in order to recoup the costs of utilising their grid to distribute power. These costs mean that economies of scale are still needed in order to make the tariff an affordable one – making wheeling suitable for very large consumers of energy only. 

Secondly, the regulatory environment can take time to navigate. In South Africa, Eskom has a wheeling framework that enables wheeling, but these agreements are still subject to approval by the National Energy Regulator, Nersa, who need to give overall permission for the arrangement. Navigating the two entities can take time, and therefore wheeling agreements typically take a while to come online. 

Nevertheless, wheeling of power has great potential to assist large energy consumers to optimise their energy loads and provide cost savings, whilst also reducing pressure on Eskom. Wheeling means that Independent Power Producers can supplement the grid and provide clean electricity to those companies that wish to procure it. 

Industrial solar installations – dos and don’ts for facilities managers

If you run an industrial facility you’ll be well aware of the benefits of grid-tied solar PV solutions. Running cheaper and more efficiently than utility-provided power (such as Eskom), solar PV provides substantial savings for industrial facilities as a source of reliable alternative power. However, there are many solar companies purporting the benefits of solar power, and not all facilities managers are able to discern the best option for their facility. The below guide highlights 5 dos and don’ts for facilities managers to ensure that the procurement of solar is an effortless one.

Do: Practice due diligence when procuring solar PV.

Procuring solar PV is a 25 year decision. If chosen correctly, solar PV can provide 25 years of affordable and clean energy to your industrial plant. As such, it is important that the procurement process is done thoroughly and due diligence is practiced. It can be easy to rush into buying solar – particularly when the savings look promising. However, practicing due diligence when procuring solar will pay off in the long run. Start by asking a few simple questions about the solar PV procurement.

  • What is the objective of the PV system? If you are using it to save money, are you looking to make operational savings through a Power Purchase Agreement, or add value to your building through acquiring a solar asset? Perhaps a bit of both?
  • If you are looking to buy a solar system outright, do you have sufficient finance to do this? Is a PPA a better option for your business?
  • What is your typical energy load, and how much of it occurs during the day? Setting up metering can really help in determining what the right sized solar PV system would look like. 
  • Where would you place the solar PV system? Although wheeling arrangements allow power to be generated in a remote solar PV facility, the majority of small-scale embedded generation (SSEG) occurs on site. Having either a stable roof or a suitable piece of land is an important consideration when writing up your request for solar quotation.

Do: Get a reputable company to carry out your industrial solar installation

The most important part of your decision will be based on getting a reputable company to build the industrial solar installation. This means choosing a company with a solid track record of solar projects, particularly in industrial facilities. The chosen company should be able to get good prices on high-quality solar components such as modules; design efficiently and thoroughly, and carry out construction safely and within the budget and timeline. 

If you’re opting for a solar PPA option – where you don’t own the solar PV facility but simply buy the energy that it generates – you’ll want to ensure that the company you choose has sufficient available finance to build and maintain the system. Making sure that the company has credentials to stick around for the full term of the PPA is important.  Make sure that the solar PV service provider can meet basic requirements, such as:

  • Design credentials. Does the company have the relevant design experience and credentials to effectively design a PV system for your site? 
  • Adherence to minimum standards. In South Africa, this includes adherence to all relevant SANS codes, and ensuring that items such as wind load calculations are carried out according to SANS standards
  • Compliance with Municipal and National electricity standards municipal/eskom standards, including carrying out the relevant application processes to ensure that the PV system is legally compliant (such as Small Scale Embedded Generation (SSEG) applications)
  • Ensuring that a Practicing Engineer (Pr. Eng) is able to sign off on the system design and construction, yield estimation accuracy, 
  • Qualified site supervision, and construction that complies with all Occupational Health and Safety standards
Industrial Solar Installations SOLA

Do: Compare Apples with Apples

Getting comparative quotes is always recommended: it helps you to compare different solar PV companies and pricing, which helps to make a better decision. However, make sure to compare apples with apples when comparing quotes. It is important to consider that different PV companies structure their pricing in different ways, so be sure you understand exactly what each company is offering before comparing their pricing. 

When comparing proposals from various companies, consider the following: 

  • Equipment selection: the selection of tier 1, quality equipment will likely push the price up slightly, but it will mean that the system is better able to perform over its 25 year lifespan.
  • Inverter and panel derating characteristics: the derating of inverters and panels will affect the ability of the PV system to produce power over time
  • The sizing of the PV system: Is is optimally sized in order to meet your load requirements? A system that is too large or too small won’t save you the optimal amount of money. A slightly higher AC-DC ration will also affect price.
  • Lifetime savings and guaranteed savings: make sure you compare these two metrics, as the initial EPC price might differ but offer more in the way of lifetime savings, etc.  
  • Total guarantee/warranty package, insurance and liability: what parts of the system are insured and have warranties? This will affect the costs of upkeep and maintenance of the system. 

If you are thinking of entering into a solar Power Purchase Agreement (eg. buying solar energy directly), consider the following when comparing quotes:

  • The length of the PPA. Generally, the longer the PPA, the more affordable the tariffs will be. The length of the PPA will need to suit your business’s needs over the long term, considering things like whether the business would like to take ownership of the PV system.
  • The tariff escalation. At a first glance, a PPA tariff might appear higher, but it will have a lower escalation throughout the length of the PPA. Understanding the escalation is important to consider
  • Any upfront payments – again, a lower tariff might be because of a large upfront payment, so it is important to consider when comparing quotes. This is also the case with any bullet payments during the term or at the end of the PPA. 
  • Whether insurance and part replacement is included in the tariff. Again, a lower tariff might have excluded these items, making the costs more over the long run.
  • Forex – how forex is calculated and included on the agreement will affect the price. 

Don’t: Delay the solar procurement process

As much as it is important to practice due diligence when procuring solar PV, delaying the process unnecessarily is also seriously detrimental to the solar PV process. Solar PV savings start from day 1 – meaning that delaying the process is also delaying the cost savings. If the process is delayed, there could be unnecessary complications and expenses, such as 

  • Availability of the construction team and build schedule – most companies have tight timelines and their availability could mean that the process is further delayed if your project is not booked into the build schedule timeously.
  • SSEG applications – delaying choosing a solar PV provider can result in a delayed SSEG application, which can result in delays to switching the PV system on (and thus benefiting from the clean energy that it provides!)
  • Structural assessments – delaying the procurement process can also affect the structural assessment process, which is an essential part of rooftop solar PV systems. This can result in an overall delay of constructing the project. 

Dont: forget to calculate your cost savings through solar – both monetary and environmental 

At the end of the day, the solar PV system will save your business significantly in terms of operational costs. However, there is also significant benefit in terms of environmental savings. Keeping track of the carbon emissions savings is an important way to acknowledge the value of the solar PV system. 

Making sure that you have a competent Operations and Maintenance Service Partner will ensure that you can keep track of the relevant cost savings on a monthly basis and ensure that the plant is performing optimally. This can help to diagnose and solve any issues early, saving money for your operations.

If you have opted for a solar PPA, ensure that your partner provides you with carbon emissions savings with your monthly invoice, so that you can use the data when calculating your overall carbon savings. Solar PV is a choice that not only saves money – it is a conscious choice that ultimately will sustain generations to come. It’s something to be proud of, and use in your marketing strategy.

In conclusion, solar installations are useful for industrial facilities. Saving costs and carbon, they are a surefire way to increase cost savings. Following the above dos and don’ts will ensure that your solar installation is ultimately the right fit for your business. 

Solar for mines

How solar for mines helps to reduce operational costs and achieve a lower carbon footprint

Reliance on third-party infrastructure a significant risk for mines

The outlook for the mining industry in South Africa was a mixed bag in 2018 with bulk commodity prices continuing to rise from their lull at the beginning of 2016, while precious metals continued to struggle. Cost increases have put the mining industry under significant pressure and although price plays a crucial role in profitability, there are large fixed-cost elements associated with mining. Thus maintaining and ensuring optimum production levels plays a significant role in achieving profitability. 

This is why reliance on over-stretched third-party electricity suppliers such as Eskom can compromise profitability. In PwC’s annual publication highlighting trends in the South African mining industry it was reported that one of the significant subcategories driving risk is reliance on third party infrastructure with the cost and availability of electricity and water still a concern.

Mining facilities that typically rely on diesel electricity can use a solar microgrid to reduce the overall cost of energy, increase energy resiliency, thus ensuring control of their energy and power requirements. SOLA’s energy storage services department has considerable experience in combining battery storage solutions and existing generators in microgrid systems ensuring a continuous, uninterrupted electricity supply which is integrated with all other power sources.

Namibia and Botswana considering a 20-year, 4.5 GW solar push

‘The market for electricity produced by the mega-solar projects in Botswana and Namibia includes 12 other countries in the region that could be connected via new and/or upgraded transmission infrastructure,’ – WEF

The World Economic Forum’s (WEF) Global Future Council on Energy, has revealed that the governments of Botswana and Namibia are planning to develop 5 GW of solar capacity over the next two decades. Namibia and Botswana are considered perfect candidates for solar owing to their high solar radiation, strong legal and regulatory environments, suitable land availability and potential to host a low-cost, efficient electricity market to meet rising demand in the region. It has been suggested that this ambitious project, if completed, could lead to Namibia and Botswana exporting power to South Africa.

Botswana, a founding partner in a responsible mining initiative

Reducing carbon emissions is part of a global trend in the mining industry. Bloomberg reported last month that an explosive demand for renewable energy is expected to drive a global rush of exploitation, thus Botswana, the US, Australia and Peru are founding partners in an initiative to encourage responsible mining of rare earths and other minerals used in renewable energy projects such as solar panels, wind turbines and car batteries. 

Botswana’s mining industry contributes a third to the country’s GDP and 50% of tax earnings, and although the last quarter has seen a dip, economic growth is projected to pick up to 4.6% in 2020, supported by ongoing structural reforms aimed at diversifying the economy. It is perfectly primed to implement solar energy storage for mines owing to high solar radiation, the remote location of its mining facilities, weak grid supply and reliance on diesel.

Projected economic growth in Namibia in 2020

The IMF reports that Namibia’s economy will return to growth in 2020 after contracting for three straight years, though a failure to implement structural reforms could contribute to sluggish growth. Namibia has the second highest solar irradiation levels in the world, thus making solar energy storage for mines an appealing option.

No longer a question of if, but when

‘Industries that aren’t moving towards zero-carbon emissions will be punished by investors and go bankrupt’

Industries that aren’t moving towards zero-carbon emissions will be punished by investors and go bankrupt, warned the governor of the Bank of England, Mark Carney, last week. Thus renewable and storage technologies present the perfect solution by reducing energy costs while improving power quality and lowering carbon emissions.

The climate crisis will have a real financial effect on all major industries. Last Tuesday Carney told large corporations that they had two years to agree to rules for reporting climate risks before global regulators devised their own and made them compulsory.

Energy autonomy or supplementing grid supplied energy with embedded energy generation are both solutions to optimising production costs and reducing carbon footprint. Solar PV is both a cost-effective and decentralised form of energy, making it perfect for mines and other large scale energy-producers choosing to supplement their supply.

 Off-grid solar provides the ideal energy storage solution for mines. Remote locations, weak grid supply and reliance on diesel provide the optimal business case for solar PV microgrid. To test if your mining facility is suited to making the switch to off-grid make use of SOLA’s user-friendly mining tool.

Is solar energy suitable for my business?

You may have heard of solar PV – perhaps you even know other businesses that are using it. However, you might be wondering if solar PV is relevant for your business. It is worth considering that various factors affect the overall costs and tariffs of solar PV systems. 

Is solar PV right for my business?

At the outset, the best way to determine if your business could benefit from solar PV is by asking a few simple questions:

  1. Are you based in an area with good irradiation (solar resource)?
  2. Do you have a good quality, spacious roof or available open land near to your business?
  3. Do you use the bulk of your energy during the day?
  4. Are your reliant on diesel generators to keep your operation running during power cuts or because of lack of grid access?

If you answered “yes” to any two of the above, solar PV is definitely worth considering for your business. The aspects mentioned above are explored in more detail below. 

1. Good solar irradiation

It goes without saying, but solar PV performs better under conditions with great solar irradiation. If you are based in Africa, you are lucky: Africa has some of the best solar irradiation in the world, so it is generally a no-brainer. However, there are a few factors that might influence the quality of irradiance, which could affect the overall PV system size and thus the cost.

  • Weather: Weather can influence the quality of the irradiance. Things like extreme heat and humidity can affect how well solar modules perform, making irradiance quality vary in different geographic locations.
  • Pollution: pollution in the form of smoke and gases or particles can lower irradiation; it can also collect on solar modules and reduce their efficacy. 
  • Shading: Factors such as large buildings, highways and trees can shade roof areas during the day, causing the solar PV to stop producing. If your solar PV engineering firm is reputable they should be able to carry out an extensive shading analysis. 

2.Roof space and quality

Rooftop solar PV is often the most cost-effective solution for Commercial and Industrial businesses. As such, the size of your business’s roof, including the type of roof and if it is structurally sound, is an important factor to consider when scoping out the feasibility of solar PV.

If your roof is not suitable for mounting solar panels, it is important to consider if there is land nearby that could house a ground-mounted solar PV solution. All of these factors can affect the cost, and therefore the feasibility, of solar for your business. 

3.Energy Demand and use

An essential factor to evaluating the efficacy of a solar PV system is energy demand and use. Two factors come into this: the business’s peak power (kVA) requirements, as well as its electricity use (kWh). If the business is a high energy consumer, especially if it runs 7 days a week, the costs of solar will likely be much cheaper. However if the business has large amounts of electricity usage at night, for example, it might make the cost of the system more expensive. 

4.Diesel generator usage

In Africa, many business operations rely on diesel generators in order to keep the power on, either due to weak or unreliable electricity grids, or because they have no access to the grid. In general, electricity generated by diesel is very expensive, making a solar PV microgrid, including batteries, a great way to save and cut back on this. 

Procuring solar: your options

If you are convinced that solar PV sounds like a good intervention, remember that the following options exist to procure solar PV for your business:

  • Buy solar energy directly – enter into a solar PPA in order to use solar PV electricity without any capital expenditure. The solar PV system belongs to SOLA, and you simply pay for the electricity that you use. The longer the term of the PPA, the lower the tariff over the system’s lifespan (20 years).
  • Build a solar PV system – purchase a solar PV system that your business will own, and simply pay for annual maintenance and upkeep. SOLA will design and construct the PV system for you, ensuring that it performs as predicted, and will maintain the system going forward.

Is solar feasible for my business?

If you spend over R100 000 (US$ 7000) on electricity per month, fill in some basic information in our Solar Feasibility Tool. We will evaluate the efficacy of solar for your business free of charge, and provide you with a few simple options to go forward, should you wish to proceed. 

Industrial and Commercial solar PV projects

SOLA secures R400M to finance solar PV projects for Commercial and Industrial properties through Power Purchase Agreements

A clean fund for the future

The SOLA Group has secured R400m in order to build commercial and industrial solar PV facilities across Southern Africa. The renewable energy fund, Orionis, will enable 40 MW of solar PV projects to be built without capital expenditure by the electricity off-takers.

The deal is a result of a partnership between the SOLA Group, African Infrastructure Investment Managers (AIIM), and Nedbank Energy Finance, who have partnered to provide affordable solar PV solutions for businesses that are in dire need of electricity security.

Chris Haw, chairperson of the SOLA Group, believes that  the clean energy solutions created by the fund are timeous.
“This partnership brings together three highly experienced entities whose combined skills offer consumers clean energy solutions at a time when our country desperately needs it,” he said. 

“This partnership brings together three highly experienced entities whose combined skills offer consumers clean energy solutions at a time when our country desperately needs it”

SOLA’s extensive track record of developing and building solar PV has allowed for the development of the Orionis fund, which will have the ability to fund 40 MW worth of projects. The forthcoming pipeline already includes 15 MW of solar PV Power Purchase Agreements, including several breweries and other industrial facilities around South Africa. The consumers pay for their clean energy directly, through a PPA tariff that is typically 20% lower than Eskom or their municipal provider’s rates.

The financed model would allow sectors focused on short-term cost reductions in their Opex budgets, such as FMCG companies, the opportunity to tap into solar power. This would allow reductions in operating costs and in carbon emissions, which are generally very important to industrial sectors. The financed solar PV is provided through a legal arrangement called a Power Purchase Agreement.

What is a PPA? 

A commercial solar PPA enables a fully integrated solar photovoltaic system to be installed and provide electricity to the entity through a customised monthly payment plan, typically at a tariff that is 20% lower than Eskom. PPAs can also include the option to take ownership of the PV system at the end of the financed period, with no upfront installation costs. The conditions of power purchase are detailed in the PPA which is negotiated directly with each client to ensure the agreement is workable for both parties.  

How do clean energy funds reduce opex?

As mentioned, financed renewable energy projects will enable industrial facilities to access secure and cheaper power, and free up capex for investment into their core business activities. But how does this work? 

Over the last few years, reduced costs of embedded electricity generation such as solar PV have interrupted the traditional model of electricity production. In other words, solar PV power is rapidly becoming the cheapest form of power to procure globally. In order to fund solar PV projects, however, large sums of capital are needed in order to permit, design, construct and keep the solar PV operational – similar to a regular utility such as Eskom. 

Whilst companies can opt to buy their PV systems outright, through an Engineering, Procurement and Construction (EPC) option, there is often little need for the entity to own the PV system themselves, as their main goal could be to reduce their operating expenses. Without available Capex, companies would need to secure financing in order to fund the construction of these projects.

SOLA’s PPA offering, through consolidating the finance, design, construction and operation of solar projects, allows companies to access cheaper finance than procuring it individually. “Operating at scale allows SOLA to provide lower tariffs and more competitive rates, reducing costs of financing,” adds Haw. 

For large commercial and industrial companies, PPAs enable flexible procurement of electricity, allowing them to consume the cheapest electricity available at a given time whilst also reducing their carbon footprints.

How financed solar PV can support the African Economy

Allowing small-scale, and flexible embedded generation of electricity is a key aspect to transition to a low-carbon economy, as it allows for increased penetration of renewables. 

Supporting the further deployment of small-scale embedded generation (SSEG) plants, according to Council for Scientific and Industrial Research (CSIR) Energy Centre, will also create thousands of full-time jobs and help to grow hundreds of small businesses across the country. The SOLA Group currently employs 50 full-time staff members for its South African operations, and the construction of 40 MW of solar PV projects through the fund is likely to create an additional 880 jobs in the coming years.

“The model of electricity generation that incorporates both centralised and distributed electricity will improve the ability for South Africa to meet energy demand, reduce electricity costs and strengthen resilience to outages,” concludes Haw.